Relation between RMS value and peak value

  • 28 Mar 2018
  • |   0 Comments

Relation between RMS value and peak value (Iv and Io)

Consider an AC through a circuit of resistance R. Let the current at any instant be I = Isin ∞t.  By Joules law heat produced per second = I2Rt = I2sin2 ∞t x R x 1 (Here t = 1)

Consider two circuits kept close to each other as in fig.2.  The magnetic flux produced in one circuit will affect the other also.  Changes of current in one circuit will produce changes of flux in that circuit and this will change the flux through other circuit.  Therefore an emf will be induced in secondary circuit due to current changes in the other circuit.  This is the principle of mutual induction.  The phenomenon by which an emf is induced in a circuit due to the change of current in a neighbouring circuit is called mutual induction.  If one coil is wound over the other the effect of mutual induction is greater.

The induced emf in a circuit is proportional to the rate of change of flux in that circuit and this will be proportional to the rate of change of current in the other circuit.  Thus the induced emf in the secondary is proportional to dI/dt, the rate of change of current in the primary.

Therefore the mutually induced emf = a constant x (dI/dt).  This constant is called the coefficient of mutual inductance or mutual inductance between the two circuits and it is represented by M.

Mutually induced emf =

The negative sign indicated that the induced emf opposes the change of flux. If (dI/dt) = 1, then mutually induced emf = M (numerically)

0Comments

For Comment you need to Login


Related Blogs

Basics of a Transformer

Basics of a Transformer

Transformer The transformer is an instrument used to covert an AC at a certain voltage to an AC at a different voltage without change of frequency

28 Mar 2018
Regulated power supply

Regulated power supply

Today almost every electronic device needs a DC supply for its smooth operation and they need to be operated within certain power supply limits. This

13 Mar 2018
×